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Real-Time Decision Support Systems: The
Famine Early Warning System Network

Chris Funk and Jim Verdin

Abstract A multi-institutional partnership, the US Agency for International
Development’s Famine Early Warning System Network (FEWS NET) provides rou-
tine monitoring of climatic, agricultural, market, and socioeconomic conditions in
over 20 countries. FEWS NET supports and informs disaster relief decisions that
impact millions of people and involve billions of dollars. In this chapter, we focus
on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on
combining “low frequency” and “high frequency” assessment tools. Low frequency
assessment tools, tied to water and food balance estimates, enable us to evaluate
and map long-term tendencies in food security. High frequency assessments are
supported by agrohydrologic models driven by satellite rainfall estimates, such as
the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we
suggest that both these high and low frequency approaches are necessary to capture
the interaction of slow variations in vulnerability and the relatively rapid onset of
climatic shocks.

Keywords Early warning · Drought · Food security · Climate change · Crop
modeling · Hydrology

1 Introduction

The rhythms of plant emergence, vegetative increase, reproduction, and grain filling
still dominate and organize the activities of half the world. Cycles of good, bad, and
intermediate harvests continue to help shape the fate of nations. Cycles of recurrent
bad harvests punctuated by a few seasons with good harvest continue to aggravate
the fate of developing countries. In many developing nations, coping with hydro-
logic extremes is equivalent in cost and potential outcome to war (Kates 2000). The
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impacts of drought are not limited to the poorest nations. Even though only 2% of
the Republic of South Africa’s GDP is based on agriculture, season rainfall totals
are tightly coupled to economic growth, with a correlation of 0.7 (Jury 2002). In
the United States, severe drought years, such as 2002, may result in billion dollar
losses. Global per capita water supplies will likely drop by a third over the next
20 years (WWD 2003), and 2 to 7 billion people may face chronic water short-
ages by 2050. Food crises (Natsios and Doley 2009) will continue to emerge as
the world’s population grows faster than crop yields (Funk and Brown 2009); per
capita cereal production peaked in 1986 and will likely decline by 14% over the next
20 years. In Kenya, it’s estimated that arable land is declining by 2% per year due
to population growth and human settlements in key agricultural areas. This figure is
very likely to increase with declining rainfall trends and associated land degradation
(personal communication). At present, 1 billion people in 50 nations face chronic
food shortages, with 20% or more of that population undernourished (FAO 2007).
Food security early warning systems seek to mitigate shocks to these vulnerable
populations. This chapter briefly discusses the work of one such system: the US
Agency for International Development’s Famine Early Warning Systems Network
(FEWS NET).

Fig. 1 FEWS NET contingency planning and response schema. Preseason, midseason, and
postseason opportunities of hydrologic early warning
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1.1 The Three Components of the FEWS NET Planning Process

Most food, especially in the developing world, is produced and consumed on a fairly
local scale. Local food deficits related to agricultural and pastoral drought can have
devastating impacts. Drought, however, is a “slow onset disaster” and, as such, is
amenable to early warning applications tied to hydrologic monitoring and modeling.
“Droughts,” however, must be understood as a water deficit defined against a given
human need. Thus, effective hydrologic early warning must evaluate changes in both
demand and supply. Supply and demand will change at seasonal and decadal time
scales, and effective monitoring requires modeling at both these temporal horizons.

The FEWS NET process can be conceptually divided into three components
(Fig. 1). In the first process, “vulnerability identification,” at-risk populations are
mapped and trends in food insecurity are analyzed (Fig. 1a). This process is
informed both by water and food availability studies and more detailed food
economy studies focused on markets, prices, and livelihoods. The vulnerability
identification stage guides long-term decision making and planning by aid agencies.

The second FEWS NET process involves the development of food security
contingency plans (Fig. 1b). These contingency plans, supported by food security
outlooks and forecasts, enable disaster response planners to initiate strategic plan-
ning. Seasonal rainfall forecasts and Water Requirement Satisfaction Index (WRSI)
imagery play an important role in supporting agrohydrologic modeling and mon-
itoring. The third and final FEWS NET planning process (Fig. 1c) supports and
informs the design and implementation of timely and appropriate disaster relief
packages. USGS FEWS NET scientists primarily support these three activities
by studying trends in rainfall, food, and water availability by providing seasonal
rainfall forecasts, midseason crop water assessments, and postseason crop produc-
tion assessments based on Normalized Difference Vegetation Index imagery (Funk
and Budde 2009). This chapter discusses our contributions to the Vulnerability
Identification and Contingency Planning (Shaded boxes 1–4 in Fig. 1a and b).

1.2 Focus on Eastern African Food Insecurity in 2009

As of February 2009, 17 million eastern Africans face extremely high levels of
food insecurity. These individuals live primarily in the water insecure eastern parts
of these countries. These food insecurity crises have arisen through a combination
of both non-climatic and climatic underlying factors, such as increasing population
pressure, hyperinflation, trans-boundary human and livestock diseases, conflicts and
civil insecurity, climatic constraints on water availability, anomalous climate condi-
tions in the Indian and Pacific Oceans, and a recurrence of drought over the past
several years. The “real-time” applications discussed and presented in this chap-
ter are therefore germane to a current and grave food security crisis. After a brief
discussion of the background of FEWS NET (Section 2), we describe approaches
for modeling agro-hydrologic risk (Section 3) use these tools to analyze Kenyan
agricultural hydrologic conditions (Section 4), and summarize our approach
(Section 5).
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2 Background

2.1 A Brief History of FEWS NET

In 1984–1985, catastrophic droughts hit Ethiopia and Sudan, leading to more than a
million deaths. These large-scale famines shocked the world. Famine is a slow onset
disaster. The tragic lack of timely information and intervention led to widespread
human suffering. Responding to concerned citizens, the US Congress called on
USAID to create the Famine Early Warning System (FEWS) in 1985.

FEWS has been implemented in roughly 5-year phases since its inception. The
prime contract for implementation in each phase is awarded by USAID to a pri-
vate sector firm through a competitive procurement process. Support in the form of
remote sensing, modeling, forecasting, geographic information systems (GIS), data
archive, training, and product dissemination is provided by US Government sci-
ence agencies: The US Geological Survey (USGS), National Aeronautics and Space
Administration (NASA), the National Oceanic and Atmospheric Administration
(NOAA), and the US Department of Agriculture (USDA) were engaged as sci-
entific implementing partners through interagency agreements with USAID. Since
the late 1980s, FEWS has steadily evolved from being a Washington-based
activity with a few expatriates in the field to one that is primarily African-
based, with African professionals composing the majority of the staff. The latest
phase of the activity places an emphasis on networking among individuals and
institutions (governmental, inter-governmental, and non-governmental) across dis-
ciplines at the local, national, regional, and continental levels, hence the new
name: FEWS NET.

USGS participation has evolved in step with the overall shift to African-based
analyses. Regional scientists have been recruited for West Africa, the Greater Horn
of Africa (GHA), and southern Africa. These experienced scientists are African
nationals with expertise in drought monitoring, remote sensing, and GIS. They
work closely with food security analysts to interpret the nature of drought and
flood threats to livelihood systems (especially subsistence agriculture) and articulate
their findings in bulletins and reports disseminated to the international commu-
nity. The field scientists devote significant time to technical capacity building
through formal and informal training on remote sensing, GIS, hydrology, agrocli-
matology, and other topics. They work with the following African regional insti-
tutions: Agronomy-Hydrology-Meteorology Regional Center in Niamey, Niger;
IGAD Climate Predictions and Applications Centre (ICPAC) Intergovernmental
Authority on Development in Nairobi, Kenya; the Regional Center for Mapping of
Resources for Development (RCMRD) in Nairobi, Kenya; and the Southern Africa
Development Community’s Regional Remote Sensing Unit in Harare, Zimbabwe.
They play a central role in research to improve techniques, algorithms, and meth-
ods of geospatial hydroclimatology. They are well positioned to provide scientific
insights and local data that complement the work of US-based colleagues. They also
have invaluable links to African institutions of higher education.
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In 2002, USAID reorganized and moved FEWS NET out of the Bureau for
Africa and into the Bureau for Democracy, Conflict, and Humanitarian Assistance.
The scope of activity was expanded beyond Africa to include Afghanistan, Haiti,
and four countries of Central America. The global price shocks of 2007 and 2008
have spread food security concerns across a broad swath of developing nations, and
the geographic scope of FEWS NET activities is expanding as well, in synch with
these spreading concerns. The twenty first century will require the effective remote
monitoring of agriculture and pastoral conditions. Without a doubt, satellite rainfall
estimates will play a critical role in achieving this goal.

Fig. 2 The FEWS NET science network

2.2 The FEWS NET Early Warning System

The FEWS NET early warning system combines information from multiple sources
into coherent food security outlooks, alerts, and briefs for decision makers. These
products support decision making by the USAID Office of Food for Peace, the
USAID Office of US Foreign Disaster Assistance, and the United Nation’s World
Food Programme (WFP) that is critical to protecting lives and livelihoods. The
national governments of food insecure countries often use this information as well.
Early warning can help mitigate the political and humanitarian impacts of food
shortages by triggering food, health, and market-related interventions. Satellite
observations can contribute substantially to both the contingency planning and dis-
aster response planning phases of FEWS NET (Fig. 1), supporting decisions that
save lives and livelihoods, and lessen the impacts of climate extremes – droughts
and floods During the contingency planning phase, relatively uncertain informa-
tion, such as climate forecasts (Funk, et al., 2006b; Brown, et al., 2007) and climate
indicators (Box A in Fig. 1), can help guide scenario building and food security
outlooks. This typically occurs before or during the early phase of the crop growing
season. In the middle of the season (Box B in Fig. 1), satellite rainfall fields are
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used to monitor crop growing conditions. These simple water balance models use
grids of rainfall and potential evapotranspiration (Verdin and Klaver 2002; Senay
and Verdin 2003) to estimate the sufficiency of soil moisture for crop growth. At
the close of the crop growing season (Box C in Fig. 1), satellite-observed vegetation
is used to estimate crop production and/or yield (Funk and Budde 2009). In this
report, we focus on early-to-mid-season analysis of conditions in Zimbabwe and
Kenya/Somalia. While improved monitoring tools cannot make up for inadequate
agricultural inputs (seeds and fertilizer) or rainfall, they can help guide the early
identification of agricultural drought, which can lead to more timely and effective
response to dangerous food insecurity.

The FEWS decision support system DSS process can be seen as an inter-
active filtering process by which enormous amounts of data are transformed
into fair, objective, reproducible, and defensible analyses. For physical observa-
tions, FEWS NET relies primarily on satellite rainfall retrievals provided by the
Climate Prediction Center (CPC) and the Tropical Rainfall Monitoring Mission
(TRMM) a NASA product, augmented by in situ observations from the Global
Telecommunications System (GTS). Other important inputs include satellite-
observed Normalized Difference Vegetation Index (NDVI), snow extent, prevailing
global climate conditions, and local soil and topography. Such information is
used by experienced early warning analysts from USGS, NOAA, NASA, USDA,
University of California, Santa Barbara UCSB, and Africa (Fig. 2) to monitor agro-
hydrologic conditions. A critical component of the FEWS NET DSS is its network
of in-country food security analysts. In Africa, Central America, and Afghanistan,
these experts track market, vulnerability, livelihood, and agricultural conditions.
These extensive analyses are compiled by a team of experts in Washington, DC (cur-
rently led by Chemonics International), who also maintain the primary FEWS NET
Web portal (http://www.fews.net). Interactions between the physical and social com-
ponents are vital. For example, in an area where people depend on export cash crop
employment (e.g., coffee) rather than subsistence agriculture, global price shocks
may be much more harmful than local drought. Availability of agricultural inputs,
such as the distribution of seeds, can moderate or amplify the effects of growing sea-
son moisture deficits. Effective early warning combines a successful blend of earth
observations, hydrologic modeling, food economics, weather and climate modeling,
and much more. The remainder of this chapter, however, will focus on applications
of satellite remote sensing to agrohydrologic early warning.

2.3 A Synopsis of USGS FEWS NET Early Warning Research

Early Warning Systems can help mitigate the political and humanitarian impacts
of food shortages by supporting food, health, and market-related interventions.
Satellite observations can contribute substantially to both the contingency planning
and disaster response planning phases of FEWS NET (Fig. 1), supporting decisions
that save lives and lessen the impacts of drought. A broad suite of early warning
products (Rowland, et al., 2005) can be viewed at http://earlywarning.usgs.gov.
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These products are primarily driven by satellite rainfall estimates (RFE) provided
by the NOAA CPC (Xie and Arkin 1997) or the NASA TRMM multisatellite pre-
cipitation analysis (TMPA, Huffman, et al., 2007). Early work by the USGS science
team involved using remotely sensed rainfall estimates to monitor the onset of rains
(Verdin and Senay 2002) and generate WRSI maps (Verdin and Klaver 2002; Senay
and Verdin 2003). These simple water balance models use grids of rainfall and
potential evapotranspiration to estimate whether sufficient soil moisture is available
for crop growth. A stand-alone version of the Geospatial WRSI (Magadzire 2009)
is available from the Climate Hazard Group at the University of California, Santa
Barbara (UCSB).1 The USGS team has also developed early warning tools based
on NDVI (Funk and Budde 2009).

Beginning in the late 1990s (Verdin, et al., 1999), the USGS FEWS NET team
has also evaluated the impact of El Niño and Indian Ocean climate variations (Funk,
et al., 2002, 2006a; Brown, et al., 2007; Funk 2009), occasionally producing ad hoc
forecasts as needed to support early warning.

2.4 A Synopsis of FEWS NET-Related Climate Change and Food
Security Research

One focus of our FEWS NET research has been the evaluation of climate change and
vulnerability trends in food insecure eastern and southern Africa. This work began
with the creation of historical rainfall time series for Africa (Funk, et al., 2003b;
Funk and Michaelsen 2004). In 2003, FEWS NET evaluated the predictive potential
of early growing season rainfall in Ethiopia and provided USAID with food balance
projections (Funk, et al., 2003a). That analysis revealed two disturbing tendencies.
First, agriculturally critical regions of Ethiopia had experienced substantial precip-
itation declines. Second, population growth and food balance analyses suggested
that Ethiopia faces chronic and increasing food deficits.

FEWS NET followed up on this study with a careful study of thousands of
eastern African rainfall gauge observations. The analysis suggested that a warm-
ing Indian Ocean was likely to produce increasing dryness in extremely vulnerable
areas of eastern and southern Africa. These results were presented in an extensive
FEWS NET report (Funk, et al., 2005). The work was also published by the United
Kingdom’s Royal Society (Verdin, et al., 2005) and presented in 2005 at its meeting
on Climate Change and Agriculture. Lord May, the President of the Royal Society,
referred to this work in an open letter to the G8 Ministers, asking them to “recog-
nize the impacts of increasing drought conditions in Ethiopia . . . that may already
be occurring due to climate change, and to agree to further action to combat green-
house gas emissions.”2 Satellite observations of vegetation greenness also reveal
these declines (Funk and Brown 2005).

1 http://chg.geog.ucsb.edu/wb/geowrsi.php
2 http://www.royalsociety.ac.uk/news.asp?id=3833
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Over the past several years, FEWS NET has continued multidisciplinary research
on this topic. Reporting in the Proceedings of the National Academy of Sciences
(Funk, et al., 2008) suggests that the dangerous warming in the Indian Ocean is
likely to be at least partially caused by anthropogenic greenhouse gas emissions.
Thus, further rainfall declines across parts of eastern and southern Africa appear
likely. These drought projections run counter to the recent 4th Intergovernmental
Panel for Climate Change (IPCC) assessment. The authors have suggested in
Science that climate change assessments, based on inaccurate global climate pre-
cipitation fields, probably understate the agricultural risks of the warming Pacific
and Indian Oceans (Brown and Funk 2008). The interaction of growing populations
and limited potential water and cultivated areas increases food and water insecu-
rity, amplifying the impacts of drought. A more recent paper, for the new journal
Food Security, focuses on global risks implied by these tendencies (Funk and Brown
2009).

3 Techniques for Evaluating Hydrologic Risk

3.1 Low Frequency and High Frequency Models for Food Security
Risk Monitoring

In general terms, we can represent the risk of food insecurity (r) as a function of
shocks (s) and vulnerabilities (v).

r = F(s,v) (1)

In this equation, shocks represent any serious disruption of food availability or
access. Shocks may be related to global price increases, fertilizer shortages, political
instability, or outbreaks of epizootic diseases such as Rift Valley Fever. For many
semiarid areas dependent on rainfed agriculture, however, soil moisture deficits are
commonly a potential shock. Shocks alone, however, do not create risks. The under-
lying vulnerability of livelihoods determines the impact of a given shock, such as
agricultural drought. Complex economies, integrated into world markets, have the
means to transport food (virtual water), making up for local rainfall deficits. In many
parts of Africa, Asia, and Central and South America, where most people still subsist
by farming, local rainfall deficits often translate into local food shortages.

In examining food security risks, it is important to consider both low frequency
(years-to-decades) and high frequency (weeks-to-seasons) changes in shocks and
risks. Theoretically, we can write a somewhat more complicated equation for risk.

r = F(slow + shigh,vlow + vhigh) (2)

In this revised formula, hydrologic shocks might arise as a function of both
weather and slowly varying changes in growing conditions. This latter category
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might include deleterious tendencies of declining rainfall and increasing temper-
atures, or degrading soil conditions. Shifts in agricultural practices (crop selection,
fertilizer use, water retention, and harvesting practices) will also modify a shock.
In a similar fashion, globalization, urbanization, biofuel usage, economic develop-
ment and growth, and the burden of diseases such as HIV/AIDS and malaria act to
slowly change baseline vulnerability patterns. We discuss techniques for evaluating
the patterns in the next two Sections 4.1 and 4.2.

3.2 Evaluating Low Frequency Changes in Food Security
Risks with Food and Water Balance Models

While they can often miss the complexity of individual food or water insecu-
rity crises, at low frequencies, simple water and food balance calculations can
usefully represent the slow evolution of risk, especially in less economically devel-
oped societies. It often holds, both in space and in time, that food and water
vulnerability are strongly coupled to per capita supply. This is especially true in
landlocked, poor, semiarid countries with nominal food and water transport infras-
tructures. Most food is used near where it is produced, and most rainfall is used
near where it falls. Understanding this fact allows us to relate low frequency spatial
and temporal variations in vulnerability (vlow) to basic per capita food and water
balances.

vlow ∞ supply · person−1 (3)

In this equation, supply may typically be cereal grain production, total caloric
production, or available water. While these balance equations clearly miss a great
deal of the local variations between societies and governments, they do help define
significant variations in the geography of food and water insecurity. Insecurity often
arises from limited food and water availability, and balance equations provide a first
order approximation of vulnerability.

Figure 3 shows an example drawn from an updated version of a 2003 FEWS NET
analysis. This report provided USAID with historical and projected estimates of a
“theoretical number of people without food” based on an assumed per capita cereal
requirement. Historical trends in this food balance (Fig. 3.a) indicated increasing
levels of food insecurity. Projections based on flat production trends and a popula-
tion growth of 1.8 million people per year (Fig. 3.b) suggested that the theoretical
number of people in Ethiopia without food would increase by some 1.5 million per
year. In fact, since 2003, the number of people in Ethiopia has increased from 7 to
12 million, an increase of about 1 million per year.

Spatial per capita water availability measures can also provide useful guidance.
In 2005 (Funk, et al., 2005), runoff built on the water harvest potential mapping
work of Senay and Verdin (2004) was used to evaluate per capita water availability
for Ethiopia. This work used the SCS Curve Number method to estimate annual
runoff. The derivation of the curve numbers can be found in Artan, et al., (2001).
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Fig. 3 Theoretical food balance results from our 2003 FEWS NET report (1995–2008, left axis),
superimposed with actual FEWS NET food insecurity estimates (2002–2008, right axis). Historical
population without food estimates (a) were based on observed crop production and population data.
Projected population without food estimates (b) assumed constant crop production and a growing
population. The dashed line (c) shows actual FEWS NET estimates of acutely food insecure peo-
ple. These FEWS NET estimates are based on extensive in-country analysis, and are one important
basis for international food aid requests

Daily RFE2 data were used to derive annual mean runoff values for 10 km grid cells.
This mean runoff was divided by gridded population (Dobson, et al., 2000) to esti-
mate spatial patterns of household water availability (Fig. 4). This map is presented
with a reference unit volume of 1000 m3 of water, after considering evaporation
and seepage losses from reservoirs. The 1000 m3 is suggested based on the amount
of water that can be used to grow enough grain and biomass to support an average
farm family in Africa. Taking into account system inefficiencies, regions with two
or fewer units may be labeled as highly vulnerable. Areas with 2–4 units may be
considered vulnerable. In general, Ethiopia may be roughly partitioned into three
sections: water insecure areas with low rainfall (Fig. 4a), relatively wet areas with
high population densities (Fig. 4b), and relatively wet areas with water surpluses
(Fig. 4c).

Spatially, there is a very strong correspondence between areas of low rainfall
and water availability (Fig. 4a) and areas in eastern Ethiopia currently experiencing
chronic food insecurity (red areas in Fig. 5). These food insecure conditions have
arisen through a combination of increasing population pressure (Fig. 3), climatic
constraints on water availability (Fig. 4), and recurrent drought. The next section
evaluates this latter tendency using a combination of downscaled 2.5◦ long-term
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Fig. 4 Volume of potentially available annual surface water per family in 1,000 m3 units (assumes
7 persons per family)

Fig. 5 FEWS NET estimated
food security conditions,
October–December 2008.
Image obtained from
http://www.fews.net

(1979–2005) Global Precipitation Climatology Project (GPCP, Adler, et al., 2003)
monthly rainfall fields and RFE2 precipitation.

3.3 Combining Long-Term and Real-Time Satellite Rainfall
Records

While extremely useful for crop modeling and early warning applications, high res-
olution satellite products, such as the RFE2 (Xie and Arkin 1997) and the TMPA
(Huffman, et al., 2007), have relatively short periods of record. To overcome this
limitation, we have developed two analogs to the satellite estimates: the 1960–1996
Collaborative Historical African Rainfall Model (CHARM) time series (Funk, et al.,
2003b) and a gauge-enhanced downscaled version of the GPCP (Funk, et al., 2008).
The CHARM time series used a reanalysis-driven model of orographic rainfall
(Funk and Michaelsen 2004). Unfortunately, the reanalysis model data can produce
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spurious trends in the resulting CHARM data. For this reason, our new work focuses
on the enhanced GPCP product. We describe this product here, evaluate its accuracy
in Kenya, and use the combination of enhanced GPCP and RFE2 data to examine
recent rainfall trends and anomalies in Kenya, where the station support for both
products is quite high, and current food insecurity is very substantial, with more
than 10 million people at risk.

The GPCP enhancement procedure began with the creation of a set of high qual-
ity, monthly 0.1◦ resolution long-term mean fields. These orographically enhanced
mean fields were produced by combining three sources of information: (i) 0.1◦ long-
term average monthly satellite rainfall estimate (RFE2, Xie and Arkin 1997) grids
p̄, (ii) 0.1◦ grids of elevation e and slope s, and (iii) observations (ō) of long term
mean rainfall measured at a large number of stations. The use of satellite rain-
fall averages as a basis for deriving improved gridded climatologies, as far as we
know, is new. This innovation grows naturally out of the fact that there are strong
local regressions between station normals and monthly mean satellite precipitation
(p̄). Because variations in infrared and microwave emissions covary in space with
rainfall, these estimates represent well large scale precipitation gradients. Local vari-
ations within these large scale climate gradients are often induced by topography,
and strongly related to the product of p̄ and the local elevation e and slope s. The
term p̄s describes the multiplicative interaction of local slopes and satellite rainfall
estimates. The term p̄e describes the interaction of elevation and mean satellite rain-
fall. The observed station normals (ō) can be reasonably fit by local regressions of
the form ō ≈ bo + b1p̄ + b2p̄e + b3p̄s.

Because these models use long term monthly mean rainfall p̄ and the interaction
of these rainfall mean fields with topography (p̄e, p̄s), they benefit from the ability of
satellite rainfall estimates to capture spatial gradients in rainfall. These models were
fit as described in Funk and Michaelsen (2004), except that a series of moving spa-
tial windows with a 7◦ radius (~770 km) were used to develop localized regression
models, based on distance-weighted subsets of 6965 FAOCLIM2.0 precipitation.
The period represented by these climate normals varies by station but typically cor-
responds to the 1950–1980 era. These moving window regressions produced 12
monthly 0.1◦ grids of average rainfall. Block kriging was then used to interpolate
the 6,965 at-station differences (residuals) between the FAOCLIM2.0 climate nor-
mals and regression estimate grids. The regression estimates and kriged anomalies
were combined yielding 12 monthly FEWS NET climatology fields (FCLIM). The
at-station accuracy of the FCLIM monthly long-term mean fields was evaluated
numerically by comparing the regression estimates at each of the 6965 points to the
observed value for each month. The error statistics were promising, with a coef-
ficient of determination of 0.9, a mean bias error of 0.06 mm month–1, and mean
absolute error of 18 mm month–1. As a reference, the mean monthly rainfall in sub-
Saharan Africa is 80 mm month–1, and typically ranges between 0 and 200 mm
month–1.

In the second step of the GPCP enhancement procedure, the monthly, 0.1◦,
African (20◦W-55◦E, 40◦S-40◦N) FCLIM fields were used to downscale the 2.5◦
1979–2005 GPCP dataset. Monthly GPCP data were translated into fractions of their
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long-term means, downscaled to 0.1◦ degree fields via cubic convolution interpola-
tion, and multisplied against the corresponding 0.1◦ FCLIM grids. This produced
monthly, 1979–2005, 0.1◦ downscaled GPCP fields. The second stage of the GPCP
enhancement used a modified inverse distance weighting procedure to blend a mod-
erately dense, quality controlled set of rain gauge observations with the downscaled
GPCP fields. Some of these gauges would have been included in the 2.5◦ GPCP esti-
mates. We will refer to the blended gauge-GPCP-FCLIM dataset as the “enhanced
GPCP.”

Figures 6 and 7-top panel show March-April-May validation results for the
enhanced GPCP dataset. The validation is based on 22 years (1979–1998) of a large
number (73) of high-quality daily gauge observations located the western edge of
Kenya between 34.15◦E and 35.55◦E and 1◦S and 1◦N. While the study site has
an area equal to 45% of a GPCP grid cell, the downscaled enhanced GPCP means
correspond fairly well at 0.1◦ resolution (Fig. 6), and the spatial R 2 of these fields
is about 0.65. Temporally, the enhanced GPCP and validation data track very well
(Fig. 7), with a seasonal R2 of 0.87. The monthly 0.1◦ mean absolute error of the
data is 14 mm month–1, and the mean bias is 0 mm month–1. This compares favor-
ably with error statistics from the first set of rainfall estimates used by FEWS NET
(the RFE1, Herman et al. 1997). Previous analysis for this area found monthly 0.1◦AQ1
mean absolute errors of 20 mm month–1, and mean bias values of 15 mm month–1,
Funk and Verdin 2003).

Fig. 6 Monthly March–April-May mean 1979–1998 high density gauge and enhanced GPCP
rainfall estimates over the Kenya test site
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Fig. 7 Regionally averaged 1979–1998 March–May rainfall over the western Kenya test site. The
first three boxes represent 3 months from 1979 (March–May). Each consecutive set of three boxes
represents one of the following years. The top panel shows high density gauge observations and
enhanced GPCP time series. The bottom panel shows the GPCP data and enhanced GPCP time
series

Comparison between the enhance GPCP and raw GPCP data (Fig. 7, bottom
panel) show substantial discrepancies between the two data sets: the GPCP tends to
be substantially lower than the enhanced GPCP data, especially after 1986. This
shift in performance is likely due to the degradation of the publically available
station data sets over the past 20 years.

Further validation can be achieved by comparing the enhanced GPCP and RFE2
data. These results, evaluated across provinces in Kenya, are shown in Table 1
for the two main growing seasons. The long rains are centered on March–May.
The short rains are centered on October–December. In general, the correlations are
high (over 0.8), especially during the short rains. A very small province (Nairobi)
has a low correlation (0.49) during March–May. This is likely due to a differ-
ence in spatial scale and underlying station support. The low correlation for the
coastal province’s March–May time series may be attributable to the low station
density here in the RFE2 and the known difficulty with rainfall retrievals near the
coast.
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Table 1 Correlations between 2001 and 2005 enhanced GPCP and RFE2

Province
Correlation
March–May

Correlation
October–December

Correlation with
long rains yields

Eastern 0.81 0.97 0.66
North Eastern 0.83 0.86 NA
Coast 0.61 0.97 0.38
Nairobi 0.49 0.98 0.12
Central 0.85 0.85 0.60
Rift Valley 0.91 0.97 0.58
Nyanza 0.93 0.99 0.87
Western 0.98 0.94 0.95

3.4 Monitoring High Frequency Shocks Using Water Requirement
Satisfaction Index Maps

The primary agrohydrologic monitoring tool used by USGS FEWS NET is a gridded
version of the WRSI.3 Originally developed by the FAO (1977, 1979, 1986), the
WRSI is a measure of how much moisture is available to a crop relative to the crop’s
phenologically changing demands. The USGS FEWS NET team (Verdin and Klaver
2002; Senay and Verdin 2003) has created a spatially explicit version of the WRSI,
driven by gridded estimates of satellite rainfall (Xie and Arkin 1997; Huffman, et al.,
2007) and potential evapotranspiration (PET) derived using the Penman-Monteith
equation (Shuttleworth 1992; Verdin and Klaver 2002; Senay, et al., 2008) which
uses numerical weather prediction model data. In addition to rainfall and PET, the
WRSI also uses grids of soil parameters and length of the crop growing season
(Senay and Verdin 2003). This last parameter is determined by examining the ratio
of rainfall and PET and may vary from 60 days for very fast maturing crops in arid
zones to 180 days in moist high-altitude locations. In addition to these grids of data,
the WRSI requires crop-specific water demand coefficients (Kc) as a function of the
current phenology of the crop.

Before looking at the specifics of the WRSI calculation, it is worth a quick review
of crop phenology. To represent this, we show time-series data from an early study
(Tucker 1979) of vegetation index observations of a cornfield in the United States
(Fig. 8). As the plants mature, plant height, percent cover, vegetation index values,
and the crop coefficient increase linearly out to about 80 days. At this time, the
first tassels appear, and the plants go from the vegetative to reproductive stage. The
mass of cereal grains increases during the reproductive stage, so this transition is
important. Soil water deficits during this critical grain filling period are the most

3 This section builds strongly on the FEWS NET readme (http://earlywarning.usgs.gov/adds/
readme.php?symbol=ws), written by Gabriel Senay, as well as the GeoWRSI technical manual,
written by Tamuka Magadzire.
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Fig. 8 Crop phenology for a maize plot, modified from Tucker (1982)

damaging. Conversely, late season soil water deficits, after the grain biomass accu-
mulation is complete, may actually lead to higher yields by protecting the grains
from loss due to disease, insects, and mold.

AQ2

Because of the different water needs of the plant at different phenological
stages, timing is critical to the successful calculation of the WRSI, which mea-
sures the relative crop water availability from the Start of the Season (SOS) to
the End of the Season (EOS). This time period corresponds to the typical phe-
nological curve shown in Fig. 8. Standard FEWS NET WRSI modeling is done
using ~10 day (dekadal) accumulations. Each month’s rainfall is divided into the
sum of the first 10 days, the middle 10 days, and the remaining 8–11 days. The
SOS date is then determined by finding the first dekad with more than 25 mm
of rain, followed by two dekads with a total rainfall of at least 20 mm. This
threshold is linked to the necessary moisture availability triggering the crop’s
emergence. The EOS date is a function of the length of growing period, LGP
(EOS=SOS+LGP).

For a given grid cell, calculation of the WRSI initializes several months
before the SOS date with a standard water balance calculation. Once at SOS
dekad, the WRSI calculation begins. At this, and each following dekad d, up to
the EOS, the WRSI estimates the running ratio of actual plant evapotranspiration
(AETc) to the full plant water requirement (WR).

WRSI = 100

∑d
t=SOS AETc

∑d
t=SOS WR

(4)
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Fig. 9 WRSI soil water
balance

The WR value is a function of the PET and the phenologically dependent crop
coefficient (Kc), and the WRSI index is accumulated from the SOS to a given
dekad (d).

WR = PET · Kc (5)

The Kc parameter peaks during the reproductive stage of the crop (Fig. 8). The
WR is a measure of how much water the crop would need under ideal growing
conditions. Full satisfaction of WR constitutes growing conditions without water
stress, that is, WRSI values of 100. When WRSI falls below 50, a crop is considered
to have failed. This threshold of 50 is based on empirical analysis (FAO 1986, Senay
and Verdin 2003).

AETc is determined by a modified water balance calculation, with the AETc

value representing the water withdrawn from the soil water reservoir (Fig. 9) at
each time step. Depending on the soil water level, root depth, and WR, AETc may
be equivalent, or less, than WR. Please refer to Senay and Verdin (2003) for details.
Each time AETc is less than WR, the WRSI value lowers, indicating increasing
water stress. It is standard practice to produce “extended WRSI” predictions. These
extended WRSI maps continue integrating the WRSI value forward in time from
dekad d using long-term average rainfall and PET. This provides an approximation
of the final crop water status of the crop. These projections will become increasingly
accurate as the EOS date approaches and are typically quite stable by the middle to
the end of the reproductive stage. Since this date is typically several months before
the crops are harvested, the WRSI provides a valuable early warning tool.
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Operational WRSI runs are hosted at the USGS early warning portal.4 A stand-
alone version of the GeoWRSI (Magadzire 2009) has been created for PCs and is
available at the Climate Hazard Group Web site: http://chg.geog.ucsb.edu.

4 Analysis of Kenyan Agricultural Hydrologic Conditions

4.1 WRSI Anomalies for the 2007 and 2008 Long and Short Rains

Using 2nd generation satellite rainfall estimates (RFE2) from NOAA CPC, Penman-
Montieth PET (Shuttleworth 1992, Senay, et al., 2008) fields from the USGS,4 and
the stand-alone GeoWRSI tool obtained from the Climate Hazard Group Web site,

Fig. 10 GeoWRSI end-of-season maize percent anomalies for the long rains (March–September)
and short rains (October–February)

4http://earlywarning.usgs.gov
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we have calculated the 2007 and 2008 maize WRSI anomalies for the long (March–
September) and short (October–December) rainfall seasons (Fig. 10). These figures
show the end of season WRSI, expressed as percent deviations from the long-term
mean (2001–2007). In general, the arid northern parts of Kenya depend on pastoral
livelihoods. These areas are masked in the WRSI runs and shown in white in Fig.
10. Across the southern two-thirds of the country, the western parts rely more upon
the long rains, and the eastern parts depend more upon the less reliable short rainy
season. In general, the rainfall performance for the 2007 long, 2008 long, and 2008
short seasons was very poor across the entire eastern half of the country. Many
areas never received sufficient moisture to even initialize the WRSI model with an
“onset of rains” signal. This could indicate that the 25 mm SOS-threshold, originally
developed for the Sahel during the 1970s, might not be appropriate in eastern Kenya.
More research into this component of the model seems warranted.

The 2007 short rainy season provided some relief near the coast, but not fur-
ther inland. Substantial agrohydrologic shortages have contributed significantly to
the current food insecurity (Fig. 5). Using 2001–2006 long rains maize FEWS
NET yield data pooled across the eastern provinces, we can establish a reason-
able relationship to the log of seasonal March–May rainfall (R2=0.63). This simple
relationship, in turn, can be used to make estimates of very low long rain yields
across the eastern provinces (Fig. 11). Because the main rainy season ends sev-
eral months before the actual harvest, satellite rainfall can be a good early warning
trigger. In February 2009, maize prices in Kenya are almost twice the 2003–2008
average. Without assistance, the food security situation there is likely to degrade
substantially.

4.2 The 2007 and 2008 Seasons in Historical Context

How uncommon is the multiseason combination of crop water deficits presented in
Fig. 10? To address this question, we extracted long (March-April-May) and short

Fig. 11 Actual yields and
estimated long rain maize
yields for the eastern
provinces of Kenya (the area
shaded in the map above).
Actual 2001–2006 yields
(y-axis) were obtained from
FEWS NET collaborators in
Kenya. Yield estimates
(x-axis) based on the log of
March–May rainfall
(R2=0.63). No yield
estimates were available for
2007 and 2008 – the values
shown are estimated from
rainfall
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Fig. 12 Combined rainfall
performance for last four
seasons (2007 MAM, 2007
OND, 2008 MAM, 2008
OND), measured as standard
deviations over the
1979–2008 era

(October–December) province-scale rainfall time series. The well-correlated RFE2
data (Table 1) were bias corrected using the period of overlap (2001–2005) and the
2006–2008 seasons to produce a complete 1979–2008 record. For each season, and
for each province, the ratio of the 3-year (2002–2005) enhanced GPCP and RFE2
average was estimated. The 2006–2008 RFE2 values were multiplied by this scalar,
and added to the end of the enhanced GPCP time series.

The rainfall data were next transformed into ranks, which minimized the impact
of a few extremely wet short rainy seasons associated with El Niño years. Time
series of 4-season averages were then calculated and expressed as standard devi-
ations from the average. These sigma (σ) values range from about –2 to +2, with
values above ±1 denoting exceptional 4-season groupings. Figure 12 shows the
sigma values for the combined 2007 long, 2007 short, 2008 long, and 2008 short
seasons. In the middle of Kenya (the Eastern, Central and Nairobi provinces),
four-season rainfall performance has been extremely poor, compared to 1979–2008
records, with sigma values of less than –1.5. The Rift Valley province, by far
Kenya’s most productive crop growing region, is not far behind, with a sigma of
–1.4. In the arid pastoral North Eastern province and in the tropical Western
province, four-season rainfall performance has been near normal. The Coast
Province received modestly below normal rainfall in each of the four 2007 and 2008
seasons, resulting in a 4-season sigma of –0.8.

4.3 1979–2008 Trends in Kenyan Rainfall and WRSI

We can use the enhanced GPCP and RFE2 rainfall grids to examine trends in rain-
fall and WRSI. These results are presented in Figs. 13 and 14. In order to run
the GeoWRSI over the 1979–2001 era, dekadal rainfall estimates were derived by
equally dividing each months total into three dekadal estimates. Correlation analysis
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Fig. 13 Long-term rainfall and WRSI analysis for Central-Eastern Kenya. The area analyzed is
shaded in the map of Kenya

of the seasonal provincial rainfall time series indicated strong homogeneity (1979–
2008 correlations of > 0.8) among the Rift Valley, Nairobi, Central, Eastern, and
North Eastern provinces. Hence, these regions have been pooled (Fig. 13). Coastal
Kenya displayed different interannual variations, so it is presented alone (Fig. 14).
The humid Western and Nyanza provinces displayed little decadal variation, so
results for these provinces are not displayed here.

Both the central-eastern and coastal areas exhibit substantial shifts in seasonality,
with long rains decreasing (panel a) and short rains increasing (panel b) by 20–30%.
This shift has been previously noted by the regional FEWS NET scientist (Galu
2008), who has also suggested that the intraseasonal variability of the rainfall has
increased in recent years, leading to less reliable crop performance. We test this
hypothesis by estimating the 3-month standard deviation for each long and short
rain season. The standard deviation estimated from the monthly 1979 rainfall for
March, April, and May represents the variability for that season. These values,
broken out by region, decade, and season, are shown in panels c and d in Figs. 13
and 14. For the March-April-May season, no increase in variability is apparent.
For the October–December rains, on the other hand, there does appear to be a large
(>30%) increase in the intraseasonal rainfall variability, from about 38 mm month–1

in 1979–1988 to about 50 mm month–1 in the 10 years between 1999 and 2008. The
combination of panels b and d suggests that while October-November-December
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Fig. 14 Long-term rainfall and WRSI analysis for the Coastal Province of Kenya. The area
analyzed is shaded in the map of Kenya

rainfall has been increasing, on average this rainfall tends to arrive poorly dis-
tributed throughout the season (again, as suggested by Gideon Galu, 2008). We can
examine the impacts of intraseasonal rainfall variations by running the WRSI model
over the 1979–2008 era, expressing the end-of-season WRSI values as standard
deviations (σ), and estimating decadal averages. As expected, long rain WRSI
values (panel e in Figs. 13 and 14) appear to have dropped substantially across both
Central-Eastern and Coastal Kenya. In Central-Eastern Kenya, short rain WRSI
(Fig. 13f) has increased, in line with recent rainfall increases (panel Fig. 13d). The
case in coastal Kenya, however, appears quite different. While both the short and
WRSI seem to have increased by a small amount, the increase in variability appears
much more substantial.

Figures 13 and 14 also show time series displaying successive 2-year combina-
tions of long and short rainy season. The first bar on the left in panel g represents
the combined performance of the 1979 long and short rains together with the 2008
long and short rains. The last bar on the right represents the most recent 4 seasons:
the 2007 long and short rains and 2008 long and short rains. The intervening dry
seasons are not included. The data have been ranked to minimize the effect of a few
extremely wet El Niño October–December seasons. For each season, ranks for the
past 30 years have been calculated from lowest to highest and offset by 15. A value
of –15 indicates the worst season on record, 0 a median season, and 15 the best
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on record. For the areas analyzed, these individual ranks were then averaged, pro-
ducing values between –8 (very low 4-season rainfall) and 8 (very good 4-season
rainfall). For central and eastern Kenya (i.e., most of the country), the tendency
toward poorer rainfall is apparent. In the early 2000s, rainfall performance was quite
good, but the combined 2007–2008 long-short rains appear to be the worst over the
period analyzed. Coastal Kenya also exhibits a downward tendency, again driven
by the decreasing long rains. Except for a few positive years, linked to wet 2006
long and short rains, the average rainfall performance for Coastal Kenya has been
substantially below normal.

5 Summary and Discussion

In Africa, 90% of farmers are smallholders, reliant on small plots of land, lim-
ited technological inputs, and rainfed agriculture (Rockstrom 2000). These farmers
and their societies are tightly coupled to the environment and climate. This makes
them vulnerable to hydrologic extremes. Satellite rainfall estimates, especially when
linked to agrohydrologic models, such as the WRSI, can provide valuable early
indication of weather-induced shocks. The WRSI filters the rainfall data in space
and time. The particular impact of midseason rainfall receipts will vary by the
soil characteristics, the length of growing period, the crop type, antecedent rain-
fall and PET, and the phenological stage of the plant. The most damaging crop
water deficits arise during the reproductive stage of the crop (Fig. 8), when the
cereal plants switch from growing leaves to growing grains. Late planting (Funk and
Budde 2009) or midseason water deficits (Senay and Verdin 2003) can dramatically
reduce yields. The WRSI allows these disruptions to be identified months before the
actual harvest date, providing early warning and time to develop disaster response
strategies (Fig. 1).

Food security responses by USAID and partner agencies are saving thousands
of lives. A good example would be the 2002–2003 food crisis in Ethiopia. Rainfall
performance was very poor (Funk, et al., 2003a, 2005), perhaps analogous to con-
ditions accompanying the devastating 1984–1985 famine. This dryness, combined
with low planted area due to low cereal prices, produced a large spike in food inse-
curity (Fig. 3). This food crisis provided a benchmark test for the international food
security organizations, and effective response prevented widespread hunger, disease,
and social disruption. These responses were enhanced substantially by real-time
satellite rainfall applications.

In addition to effective early warning, agrohydrologic modeling can also inform
long-term food security decision making through water and food budget analysis.
This perspective helps explain, in part, the increasingly chronic food insecurity in
eastern Africa. The Ethiopian 2002–2003 food crisis in Ethiopia was associated with
about 15 million food insecure individuals. Recent food insecurity levels appear to
be trending toward this amount at a rate of about 1 million people per year. Growing
population and stagnant yields help create this problem (Fig. 3), as has the low water
availability across the more arid parts of eastern Africa (Fig. 4).
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Focusing on Kenya, we have shown that the WRSI model, driven by satellite
rainfall fields, can effectively monitor anomalous hydrologic conditions (Fig. 10).
Across most of Kenya, hydrologic growing conditions for the 2007 and 2008
long rains and the 2008 short rains were very poor, indicating failure or near-
failure of maize crops, as suggested by our empirical estimation of yields (Fig. 11).
Performance of the 2008 short rains was mixed but poor in the center of the country.

The combination of these 4 seasons appears unusually bad, indicating that a
rare and intense multiyear drought has impacted most of the country (Fig. 12).
Examination of pooled enhanced GPCP/RFE2 data support the assertion (Galu
2008) that a shift in seasonality may be occurring. Consistent with our previous
research (Funk, et al., 2005; Verdin, et al., 2005; Funk, et al., 2008), March–May
rainfall appears to be decreasing by almost 10% a decade (Figs. 13 and 14), pro-
ducing a –0.5σ reduction in WRSI over the 1979–2008 era over both coastal and
central-eastern Kenya.

The October–December short rains, on the other hand, appear to be increas-
ing. There appears to have been a substantial increase in intraseasonal variability
in the October–December short rains across central-eastern and coastal Kenya, and
the March–May long rains in coastal Kenya. Increasing intraseasonal variability
tends to reduce crop performance due to the occurrence of midseason dry spells.
WRSI analysis suggests that this increasing variability may be reducing the benefi-
cial impact of rainfall increases in coastal Kenya (Fig. 13f), consistent with reports
coming from Kenya (Galu 2008).

We suggest that satellite observations can contribute to both short- and long-term
monitoring of food security in Africa. Furthermore, we believe that both these per-
spectives are necessary. As the number of urban poor rises rapidly and global food
prices soar due to increased consumption by biofuels and livestock, there has been a
broad increase in three classic coping mechanisms (Natsios and Doley 2009): food
hoarding, migration, and increased banditry. This expanding food stress disrupts
societies and creates political unrest; over the next decade we are likely to see “food
coups” emerge as modern counterparts to the famines of the past. We have shown
that agricultural development can help reduce these impacts (Funk, et al., 2008;
Brown and Funk 2008; Funk and Brown 2009). Without addressing the key issues
of resource scarcity, short-term food aid responses may in fact act to create future
risk, moving African societies into imbalance and helping to create greater need.
More analysis of the shift in seasonality, discussed briefly here, could help guide
future agricultural development strategy.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis
S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipi-
tation climatology project (GPCP) monthly precipitation analysis (1979–Present). Journal of
Hydrometeorology 4:1147–1167

Artan G, Verdin J, Asante K (2001) A wide-area flood risk monitoring model. Proc of the Fifth
International Workshop on Applications of Remote Sensing in Hydrology. Montpelier, France



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-164676 Chapter ID 17 August 5, 2009 Time: 09:16pm Proof 1

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

Famine Early Warning System

Brown M, Funk C (2008) Food security under climate change. Science 319:580–581
Brown ME, Funk CC, Galu G, Choularton R (2007) Earlier famine warning possible using remote

sensing and models. EOS, Transactions of the American Geophysical Union 88(39):381–382
Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) Landscan: global popu-

lation for estimating population at risk. Photogrammetric Engineering and Remote Sensing
66(7):849–857

FAO (1977) Crop water requirements. FAO Irrigation and Drainage Paper No. 24, by Doorenbos J
and W.O. Pruitt. FAO, Rome, Italy

FAO (1979) Agrometeorological crop monitoring and forecasting. FAO Plant Production and
Protection Paper No. 17, by M. Frère and G.F. Popov. FAO, Rome, Italy

FAO (1986) Early agrometeorological crop yield forecasting. FAO Plant Production and Protection
Paper No. 73, by M. Frère and G.F. Popov. FAO, Rome, Italy

FAO (2007) The State of Food and Agriculture. United Nations Food and Agriculture Organization,
Rome

Funk C (2009) New satellite observations and rainfall forecasts help provide earlier warn-
ing of drought in Africa. The Earth Observer http://earlywarning.usgs.gov/adds/pubs/
Funk_EarthObserver_Jan_Feb09.pdf. Accessed 17 March 2009

Funk C, Asfaw A, Steffen P, Senay G, Rowland J, Verdin J (2003) Estimating Meher
Crop Production Using Rainfall in the ‘Long Cycle’ Region of Ethiopia. FEWS NET
Special Report.http://earlywarning.usgs.gov/adds/pubs/EthProductionOutlook.pdf. Accessed
17 March 2009

Funk C, Brown M (2005) A maximum-to-minimum technique for making projections of NDVI
in semi-arid Africa for food security early warning. Rem Sens Environment 101:249–256.
http://earlywarning.usgs.gov/adds/pubs/ndvi_projections.pdf. Accessed 17 March 2009

Funk C, Brown M (2009) Emerging threats to globalfood security. Food Security. In PressAQ3
Funk C, Budde M (2009) Phenologically-tuned MODIS NDVI-based production anomaly esti-

mates for Zimbabwe. Remote Sensing of Environment 113(1):115–125
Funk C, Dettinger MD, Brown ME, Michaelsen JC, Verdin JP, Barlow M, Hoell A (2008)

Warming of the Indian Ocean threatens eastern and southern Africa, but could be mitigated by
agricultural development. Proceedings of the National Academy of Sciences 105:11081–11086

Funk C, Magadzire T, Husak G, Verdin J, Michaelsen J, Rowland J (2002) Forecasts of 2002/2003
Southern Africa Maize Growing Conditions Based on October 2002 Sea Surface Temperature
and Climate Fields. FEWS NET Special Report

Funk C, Michaelsen J (2004) A simplified diagnostic model of orographic rainfall for enhanc-
ing satellite-based rainfall estimates in data poor regions. Journal of Applied Meteorology
43:1366–1378

Funk C, Michaelsen J, Verdin J, Artan G, Husak G, Senay G, Gadain H, Magadzire T (2003) The
collaborative historical African rainfall model: description and evaluation. International Journal
of Climatology 23:47–66

Funk C, Schmitt C, LeComte D (2006) El Niño and Indian Ocean Dipole conditions likely into
early 2007, with drought and flooding implications for Southern and Eastern Africa. FEWS
NET Special Report

Funk C, Senay G, Asfaw A, Verdin J, Rowland J, Michaelsen J, Eilerts G, Korecha D,
Choularton R (2005) Recent Drought Tendencies in Ethiopia and equatorial-subtropical
eastern Africa. FEWS NET Special Report. http://chg.geog.ucsb.edu/pub/pubs/
RecentDroughtTendenciesInEthiopia.pdf. Accessed 17 March 2009

Funk C, Verdin J (2003) Comparing satellite rainfall estimates and reanalysis precipitation
fields with station data for western Kenya. Proceedings of the International Workshop on
Crop Monitoring for Food Security in Africa, European Joint Research Centre/UN Food and
Agriculture Organization, Nairobi, Kenya, January 28–30

Funk C, Verdin J, Husak G (2006) Integrating observation and statistical forecasts over sub-
Saharan Africa to support Famine Early Warning. American Meteorological Society Meeting,
Nov. 2006, Extended Abstract



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-164676 Chapter ID 17 August 5, 2009 Time: 09:16pm Proof 1

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

C. Funk and J. Verdin

Galu G (2008) Recent changes in seasonal rainfall patterns in the Greater Horn of Africa. FEWS
NET Internal Report

Huffman G, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff
DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multi-
year, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology
8(1):38–55

Jury MR (2002) Economic impacts of climate variability in South Africa and development of
resource prediction models. Journal of Applied Meteorology 41:46–55

Kates RW (2000) Cautionary tales: adaptation and the global poor. Climatic Change 45:5–17
Magadzire T (2009) The Geospatial Water Requirement Satisfaction Index Tool, TechnicalManual.AQ4

USGS Open-File Report. In Review
Natsios AS, Doley KW (2009) The coming food coups. The Washington Quarterly 32(1):7–25
Rockstrom J (2000) Water resources management in smallholder farms in Eastern and Southern

Africa: an overview. Physics and Chemistry of the Earth (B) 25:275–283
Rowland J, Verdin J, Adoum A„ Senay G (2005) Drought monitoring techniques for famine early

warning systems in Africa. Chapter 19 in Monitoring and Predicting Agricultural Droughts:
A Global Study, Boken VK, Cracknell AP, Heathcote RL(Eds.), Oxford University Press,
New York

Senay G, Verdin J (2003) Characterization of yield reduction in Ethiopia using a GIS-based crop
water balance model. Canadian Journal of Remote Sensing 29(6):687–692

Senay G, Verdin J (2004) Developing index maps of water-harvest potential in Africa. Applied
Engineering in Agriculture, American Society of Agricultural Engineers 20(6):789–799

Senay G, Verdin J, Lietzow R, Melesse A (2008) Global daily reference evapotranspiration
modeling and validation. Journal of the American Water Resources Association 44(4):969–979

Shuttleworth J (1992) Evaporation. In: Maidment D (Ed.) Handbook of Hydrology. McGraw-Hill,
New York

Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sensing of Environment 8:127–150

Verdin J, Funk C, Klaver J, Roberts D (1999) Exploring the correlation between Southern African
NDVI and ENSO sea surface temperatures: results for the 1998 growing season. International
Journal of Remote Sensing 20(10):2117–2124

Verdin J, Funk C, Senay G, Choularton R (2005) Climate science and famine early warning.
Philosophical Transactions of the Royal Society B 360:2155–2168 http://earlywarning.usgs.
gov/adds/pubs/Climate%20Science%20and%20Famine%20EW.pdf. Accessed 17 March 2009

Verdin J, Klaver R (2002) Grid cell based crop water accounting for the famine early warning
system. Hydrological Processes 16:1617–1630

Verdin J, Senay G (2002). Evaluating the performance of a crop water balance model in estimating
regional crop production. Proceedings of the Pecora 15 Symposium, Denver CO

WWD (2003) UN World Water Development Report, Water for People, Water for Life. UNESCO.
http://www.unesco.org/water/wwap/wwdr/table_contents.shtml. Accessed 17 March 2009

Xie P, Arkin PA (1997) A 17-year monthly analysis based on gauge observations, satellite
estimates, and numerical model outputs. Bulletin of the American Meteorological Society
78(11):2539–2558



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-164676 Chapter ID 17 August 5, 2009 Time: 09:16pm Proof 1

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

Chapter 17

Q. No. Query

AQ1 The reference Herman et al. (1997) is not listed in reference list. Please
provide.

AQ2 The reference Tucker (1982) is not listed in the reference list. Please provide.

AQ3 Please update the reference Funk and Brown (2009, in press).

AQ4 Please update the reference Magadzire (2009 in review).


	164676_1_En_17_Chapter_OnlinePDF.pdf
	Real-Time Decision Support Systems: The Famine Early Warning System Network
	1 Introduction
	1.1 The Three Components of the FEWS NET Planning Process
	1.2 Focus on Eastern African Food Insecurity in 2009

	2 Background
	2.1 A Brief History of FEWS NET
	2.2 The FEWS NET Early Warning System
	2.3 A Synopsis of USGS FEWS NET Early Warning Research
	2.4 A Synopsis of FEWS NET-Related Climate Change and Food Security Research

	3 Techniques for Evaluating Hydrologic Risk
	3.1 Low Frequency and High Frequency Models for Food Security Risk Monitoring
	3.2 Evaluating Low Frequency Changes in Food Security Risks with Food and Water Balance Models
	3.3 Combining Long-Term and Real-Time Satellite Rainfall Records
	3.4 Monitoring High Frequency Shocks Using Water Requirement Satisfaction Index Maps

	4 Analysis of Kenyan Agricultural Hydrologic Conditions
	4.1 WRSI Anomalies for the 2007 and 2008 Long and Short Rains
	4.2 The 2007 and 2008 Seasons in Historical Context
	4.3 1979--2008 Trends in Kenyan Rainfall and WRSI

	5 Summary and Discussion

	References


